Digital Elevation Models

Keywords: :index: “data used; Copernicus DEM 30 m”, :index: “data used; Copernicus DEM 90 m”, :index: “data used; 1 second elevation model”, :index: “data used; 1 second elevation model derivatives”, data used; ERA5, :index: “datasets; dem_cop_30”, :index: “datasets; dem_cop_90”, :index: “datasets; dem_srtm”, :index: “datasets; dem_srtm_deriv”

Contexte

Digital Elevation Models (DEMs) provide information on bare ground topography, that is, elevation irrespective of land cover such as buildings/trees. DEMs are often derived from Light Detection and Ranging (LiDAR) data sources. DEMs are used in several applications such as understanding how climatic variables change with topography.

Important details:

There are four DEM products available from the Open Data Cube. The Copernicus products come from the European Space Agency (ESA) and the Shuttle Radar Topography Mission (SRTM) products are from the United States Geological Survey (USGS):

  1. Copernicus DEM 30 m: dem_cop_30, elevation data at 30 m resolution

  2. Copernicus DEM 90 m: dem_cop_90, elevation data at 90 m resolution

  3. DEM SRTM: dem_srtm, elevation data at 1-arc second (~30 m)

  4. DEM SRTM Derivatives: dem_srtm_deriv, derivatives of the 1-arc second DEM which include:

    • Slope (percent); this is the rate of elevation change, so mathematically speaking it is the first/primary derivative of elevation.

    • Multi-resolution Valley Bottom Flatness (MrVBF); this identifies valley bottoms (areas of deposition). Zero values indicate erosional terrain and values ≥1 and indicate progressively larger areas of deposition.

    • Multi-resolution Ridge Top Flatness (MrRTF); complementary to MrVBF, zero values indicate areas that are steep or low, and values ≥1 indicate progressively larger areas of high flat land.

    • For further details on how these measurements were calculated see the DEM derivatives repository

Description

In this notebook we will load the Copernicus 30 m DEM and the DEM derivatives using dc.load(). Then we run through a short example analysis.

Topics covered include: 1. Inspecting the DEM product available in the datacube 2. Using the dc.load() function to load in DEM data 3. Plotting DEM and derivatives 4. An example analysis which compares temperature at high and low elevation


Getting started

To run this analysis, run all the cells in the notebook, starting with the « Load packages » cell.

Load packages

[1]:
%matplotlib inline

import datacube
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt

from deafrica_tools.plotting import display_map
from deafrica_tools.load_era5 import load_era5
from odc.algo import xr_reproject

Connect to the datacube

[2]:
dc = datacube.Datacube(app="DEM")

List measurements

The table below lists the products and measurements available for the DEM datasets indexed within DE Africa’s datacube. We can see that the first three products contain a single measure for elevation, expressed in metres above sea level. The derivatives product comprises percent slope, multi-resolution valley bottom flatness (mrvbf), and multi-resolution ridge top flatness (mrrtf).

[3]:
product_name = ['dem_cop_30', 'dem_cop_90', 'dem_srtm', 'dem_srtm_deriv']

dc_measurements = dc.list_measurements()
dc_measurements.loc[product_name].drop('flags_definition', axis=1)
[3]:
name dtype units nodata aliases
product measurement
dem_cop_30 elevation elevation float32 1 NaN NaN
dem_cop_90 elevation elevation float32 1 NaN NaN
dem_srtm elevation elevation int16 metre -32768.0 NaN
dem_srtm_deriv mrvbf mrvbf int16 1 -32768.0 NaN
mrrtf mrrtf int16 1 -32768.0 NaN
slope slope float32 1 -9999.0 NaN

Analysis parameters

  • lat, lon: The central latitude and longitude to analyse (e.g. -3.0674, 37.355).

  • buffer: The number of square degrees to load around the central latitude and longitude. For reasonable loading times, set this as 0.1 or lower.

  • resolution: We use 30 m here for the dem_cop_30 product.

[4]:
lat, lon = -3.0674, 37.3556 #Mt Kilimanjaro

buffer = 0.3

resolution=(-30, 30)

measurements='elevation'

#convert the lat,lon,buffer into a range
lons = (lon - buffer, lon + buffer)
lats = (lat - buffer, lat + buffer)

View the selected location

The next cell will display the selected area on an interactive map. Feel free to zoom in and out to get a better understanding of the area you’ll be analysing. Clicking on any point of the map will reveal the latitude and longitude coordinates of that point.

[5]:
display_map(x=lons, y=lats)
[5]:
Make this Notebook Trusted to load map: File -> Trust Notebook

Load the Copernicus 30 m DEM data

[6]:
#set up daatcube query object
query = {
    'x': lons,
    'y': lats,
    'resolution':resolution,
    'output_crs': 'epsg:6933',
    'measurements':measurements
}

#load the dem 30 m product
ds = dc.load(product="dem_cop_30", **query).squeeze()
print(ds)
<xarray.Dataset>
Dimensions:      (y: 2549, x: 1931)
Coordinates:
    time         datetime64[ns] 2000-01-01T12:00:00
  * y            (y) float64 -3.529e+05 -3.529e+05 ... -4.293e+05 -4.293e+05
  * x            (x) float64 3.575e+06 3.575e+06 ... 3.633e+06 3.633e+06
    spatial_ref  int32 6933
Data variables:
    elevation    (y, x) float32 1.147e+03 1.146e+03 1.148e+03 ... 851.2 854.4
Attributes:
    crs:           epsg:6933
    grid_mapping:  spatial_ref

Plot elevation

We can generate a basic plot of elevation below. The summit of Mt Kilimanjaro is 5,895m.

[7]:
ds.elevation.plot(figsize=(8,6))
plt.title('Copernicus DEM 30m');
../../../_images/sandbox_notebooks_Datasets_Digital_Elevation_Models_18_0.png

Load DEM deriviatives

Now we can load the derivative dataset with the same parameters, except measurements.

[8]:
# We just need to change the measurements parameter, lats, lon, crs etc. can remain the same.
measurements=['mrvbf', 'mrrtf', 'slope']

query = {
    'x': lons,
    'y': lats,
    'resolution':resolution,
    'output_crs': 'epsg:6933',
    'measurements':measurements
}

ds_deriv = dc.load(product="dem_srtm_deriv", **query).squeeze()
print(ds_deriv)
<xarray.Dataset>
Dimensions:      (y: 2549, x: 1931)
Coordinates:
    time         datetime64[ns] 2000-01-01T12:00:00
  * y            (y) float64 -3.529e+05 -3.529e+05 ... -4.293e+05 -4.293e+05
  * x            (x) float64 3.575e+06 3.575e+06 ... 3.633e+06 3.633e+06
    spatial_ref  int32 6933
Data variables:
    mrvbf        (y, x) int16 2 1 0 0 3 4 4 3 3 3 3 3 ... 0 1 0 0 0 1 2 2 2 1 1
    mrrtf        (y, x) int16 0 0 1 1 0 0 0 0 0 0 1 0 ... 2 2 1 0 0 0 0 0 0 0 0
    slope        (y, x) float32 7.383 12.15 13.24 10.62 ... 2.5 4.29 8.271 9.148
Attributes:
    crs:           epsg:6933
    grid_mapping:  spatial_ref

Plot derivatives

Plotting the three derivative measurements below shows areas of greater steepness around Mt Kilimanjaro. Most of the mountain has a 0 value for valley bottom and ridge tip flatness, whereas surrounding areas are identified as valleys and flat ridge tops.

[9]:
fig,ax = plt.subplots(1,3, figsize=(20,5), sharey=True)
ds_deriv.slope.plot(ax=ax[0], vmax=100)
ds_deriv.mrvbf.plot(ax=ax[1], cmap='magma')
ds_deriv.mrrtf.plot(ax=ax[2], cmap='magma')

ax[0].set_title('Slope %')
ax[1].set_title('Multi-res valley bottom flatness')
ax[2].set_title('Multi-res ridge top flatness');
../../../_images/sandbox_notebooks_Datasets_Digital_Elevation_Models_22_0.png

Analysis example: masking based on elevation

We can use elevation information to select or mask areas for analysis. In this example, we will compare climatic information between higher and lower elevation at the Virunga Mountains, a chain of volcanoes along the border of Rwanda, the Democratic Republic of the Congo, and Uganda.

Below we set up some new analysis parameters:

  • lat, lon: The central latitude and longitude to analyse for the Virunga Mountains (-1.4310, 29.5262).

  • buffer: The number of square degrees to load around the central latitude and longitude.

  • resolution: We use 90 m here with the dem_cop_90 product for faster loading and computation times.

[10]:
lat, lon = -1.4310, 29.5262
buffer = 0.2

resolution=(-90, 90)

measurements='elevation'

#convert the lat,lon,buffer into a range
lons = (lon - buffer, lon + buffer)
lats = (lat - buffer, lat + buffer)

View the selected location

[11]:
display_map(x=lons, y=lats)
[11]:
Make this Notebook Trusted to load map: File -> Trust Notebook

Load the Copernicus 90m DEM

[12]:
query = {
    'x': lons,
    'y': lats,
    'resolution':resolution,
    'output_crs': 'epsg:6933',
    'measurements':measurements
}

#load the dem
ds = dc.load(product="dem_cop_90", **query).squeeze() # Using 90 m product for better computation times
[13]:
ds.elevation.plot();
../../../_images/sandbox_notebooks_Datasets_Digital_Elevation_Models_29_0.png

Mask analysis to high and low elevation

For this analysis, we will split the dataset into areas above and below 2,000m in elevation. In the plot below we can see that this separates the chain of volcanoes from surrounding lowland.

[14]:
ds = ds.assign(high=xr.where(ds.elevation >= 2000, 1, 0))
ds = ds.assign(low=xr.where(ds.elevation < 2000, 1, 0))
print(ds)
<xarray.Dataset>
Dimensions:      (y: 568, x: 430)
Coordinates:
    time         datetime64[ns] 2000-01-01T12:00:00
  * y            (y) float64 -1.57e+05 -1.571e+05 ... -2.079e+05 -2.08e+05
  * x            (x) float64 2.83e+06 2.83e+06 2.83e+06 ... 2.868e+06 2.868e+06
    spatial_ref  int32 6933
Data variables:
    elevation    (y, x) float32 1.237e+03 1.235e+03 ... 1.765e+03 1.793e+03
    high         (y, x) int64 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0
    low          (y, x) int64 1 1 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1 1
Attributes:
    crs:           epsg:6933
    grid_mapping:  spatial_ref
[15]:
fig, axes = plt.subplots(1, 2, figsize=(16, 8), sharey=True)
ds.high.plot(cmap='Blues', ax=axes[0])
ds.low.plot(cmap='Blues', ax=axes[1])
axes[0].set_title('High elevation mask')
axes[1].set_title('Low elevation mask');
../../../_images/sandbox_notebooks_Datasets_Digital_Elevation_Models_32_0.png

Load temperature data and compare between high and low elevation

We will use the load_era5 function to load temperature data. More information on loading and using climate data can be found in the Climate_Data_ERA5_AWS Datasets notebook.

[16]:
time = time = '2021-01', '2021-03'  # first three months of 2021
temp_var = 'air_temperature_at_2_metres'
temp_mean = load_era5(temp_var, lats, lons, time, reduce_func=np.mean, resample='1D').compute()-273.15 # Convert Kelvin to Celsius

To make our calculation we will need to reproject the climate data so it matches the elevation data. We use the xr_reproject function to do this. More information on reprojecting datacube data is available here.

[17]:
temp_mean_reprojected = xr_reproject(temp_mean, ds.geobox, resampling="average")

We can see that average daily temperature tends to be lower at the altitudes >2,000m for our analysis area, according to the ERA5 reanalysis product.

[18]:
ds = ds.merge(temp_mean_reprojected, ds)
ds_high = ds.where(ds.squeeze().high)
high_mean_airtemp = ds_high.air_temperature_at_2_metres.mean(['x','y'])
ds_low = ds.where(ds.squeeze().low)
low_mean_airtemp = ds_low.air_temperature_at_2_metres.mean(['x','y'])

ds_high.air_temperature_at_2_metres.mean(['x','y']).plot(figsize = (16,4), label='Elevation >= 2,000m');
ds_low.air_temperature_at_2_metres.mean(['x','y']).plot(label='Elevation < 2,000m');
plt.legend();
plt.xlabel('Day');
plt.ylabel('Temperature C')
plt.title('Temperature above and below 2000m');
../../../_images/sandbox_notebooks_Datasets_Digital_Elevation_Models_38_0.png

Additional information

License: The code in this notebook is licensed under the Apache License, Version 2.0. Digital Earth Africa data is licensed under the Creative Commons by Attribution 4.0 license.

Contact: If you need assistance, please post a question on the Open Data Cube Slack channel or on the GIS Stack Exchange using the open-data-cube tag (you can view previously asked questions here). If you would like to report an issue with this notebook, you can file one on Github.

Compatible datacube version:

[19]:
print(datacube.__version__)
1.8.6

Last tested:

[20]:
from datetime import datetime
datetime.today().strftime('%Y-%m-%d')
[20]:
'2021-11-05'